I don't think you need a master orchestration to start up the sub-orchestrations. I am assumin you are not talking about the master orchestration implmenting a convoy pattern. So, if that's the case, here's what I might do.
There is a brief example here on how to implment a singleton orchestration. This example shows you how to setup an orchestration that will only ever exist once. All the messages going to it will be lined up in order of receipt and processed one at a time. Your example differs in that you want to have this done by customer ID. This is pretty simple. Promote the customer ID in the inbound message and add it to the correlation type. Now, there will only ever be one instance of the orchestration per customer.
The problem with singletons is this. You have to kill them at some point or they will live forever as dehydrated orchestrations. So, you need to have them end. You can do this if there is a way for the last message for a given customer to signal the orchestration that it's time to die through an attribute or such. If this is not possible, then you need to set a timer. If no messags are received in x seconds, terminate the orch. This is all easy to do, but it can introduce Zombies. Zombies occur when that orchestration is in the process of being shut down when another message for that customer comes in. this can usually be solved by tweeking the time to wait. Regardless, it will cause the occasional Zombie.
A note fromt he field. We've done this and it's really not a great long term solution. We were receiving customer info updates and we had to ensure ordered processing. We did this singleton approach and it's been problematic from the Zombie issue and the exeption issue. If the Singleton orchestration throws an exception, it will block the processing for a all future messages for that customer. So - handle every single possible exception. The real solution would have been to have the far end system check the time stamps from the update messages and discard ones that were older than the last update. We wanted to go this way, but the receiving system didn't want to do this extra work.