If it's a regular hexagon, the simplest method that comes to mind is to divide it into three rhombuses. That way (a) they have the same area, and (b) you can pick a random point in any one rhombus with two random variables from 0 to 1. Here is a Python code that works.
from math import sqrt
from random import randrange, random
from matplotlib import pyplot
vectors = [(-1.,0),(.5,sqrt(3.)/2.),(.5,-sqrt(3.)/2.)]
def randinunithex():
x = randrange(3);
(v1,v2) = (vectors[x], vectors[(x+1)%3])
(x,y) = (random(),random())
return (x*v1[0]+y*v2[0],x*v1[1]+y*v2[1])
for n in xrange(500):
v = randinunithex()
pyplot.plot([v[0]],[v[1]],'ro')
pyplot.show()
A couple of people in the discussion raised the question of uniformly sampling a discrete version of the hexagon. The most natural discretization is with a triangular lattice, and there is a version of the above solution that still works. You can trim the rhombuses a little bit so that they each contain the same number of points. They only miss the origin, which has to be allowed separately as a special case. Here is a code for that:
from math import sqrt
from random import randrange, random
from matplotlib import pyplot
size = 10
vectors = [(-1.,0),(.5,sqrt(3.)/2.),(.5,-sqrt(3.)/2.)]
def randinunithex():
if not randrange(3*size*size+1): return (0,0)
t = randrange(3);
(v1,v2) = (vectors[t], vectors[(t+1)%3])
(x,y) = (randrange(0,size),randrange(1,size))
return (x*v1[0]+y*v2[0],x*v1[1]+y*v2[1])
# Plot 500 random points in the hexagon
for n in xrange(500):
v = randinunithex()
pyplot.plot([v[0]],[v[1]],'ro')
# Show the trimmed rhombuses
for t in xrange(3):
(v1,v2) = (vectors[t], vectors[(t+1)%3])
corners = [(0,1),(0,size-1),(size-1,size-1),(size-1,1),(0,1)]
corners = [(x*v1[0]+y*v2[0],x*v1[1]+y*v2[1]) for (x,y) in corners]
pyplot.plot([x for (x,y) in corners],[y for (x,y) in corners],'b')
pyplot.show()
And here is a picture.