The actual question goes like this:
McDonald's is planning to open a number of joints (say n) along a straight highway. These joints require warehouses to store their food. A warehouse can store food for any number of joints, but has to be located at one of the joints only. McD has a limited number of warehouses (say k) available, and wants to place them in such a way that the average distance of joints from their nearest warehouse is minimized.
Given an array (n elements) of coordinates of the joints and an integer 'k', return an array of 'k' elements giving the coordinates of the optimal positioning of warehouses.
Sorry, I don't have any examples available since I'm writing this down from memory. Anyway, one sample could be:
array={1,3,4,5,7,7,8,10,11} (n=9)
k=1
Ans: {7}
This is what I've been thinking: For k=1, we can simply find out the median of the set, which would give the optimal location of the warehouse. However, for k>1, the given set should be divided into 'k' subsets (disjoint, and of contiguous elements of the superset), and median for each subset would give the warehouse locations. However, I don't understand on what basis the 'k' subsets should be formed. Thanks in advance.
EDIT: There's a variation to this problem also: Instead of sum/avg, minimize the maximum distance between a joint and its closest warehouse. I don't get this either..