Since the index starts with the sid column, it must do a scan (start at the beginning, read to the end) of either the index or the table to find your data matching the other 3 columns. This means it has to read all 25 million rows to find the answer. Even if it's reading just the rows of the index rather than the table, that's a lot of work.
Imagine a phone book of the greater New York metropolitan area, organized by (with an 'index' on) Last Name, First Name.
You submit SELECT [Last Name] FROM NewYorkPhoneBook WHERE [First Name] = 'Thelma'
It has to read all 25 million entries to find all those Thelmas. Unless you either specify the last name and can then turn directly to the page where that last name first appers (a seek), or have an index organized by First Name (a seek on the index followed by a seek on the table, aka a "bookmark lookup"), there's no way around it.
The index you would create to make your query faster is on uid, area, type
. You could include sid, though leave it out if sid is part of the primary key.
Note: Tables often do have multiple indexes. Just note that the more indexes, the slower the write performance. Unnecessary indexes can slow overall performance, sometimes radically so. Testing and eventually experience will help guide you in this. Also, reasoning it out as a real-world problem (like my phone book examples) can really help. If it wouldn't make sense with phone books (and separate phone book indexes) then it probably won't make sense in the database.
One more thing: even if you put an index on those columns, if your query is going to end up pulling a great percentage of the rows in the main table, it will still be cheaper to scan the table rather than do the bookmark lookup (seek the index then seek the table for each row found). The exact "tipping point" of whether to do a bookmark lookup with a seek, or to do a table scan isn't something I can tell you off the top of my head, but it is based on solid math.