There are three ways i see to solve this.
Writing wrapper functions
Write a wrapper function for each function that can throw exceptions which would handle exceptions. That wrapper is then called by all the callers, instead of the original throwing function.
Using function objects
Another solution is to take a more generic approach and write one function that takes a function object and handles all exceptions. Here is some example:
class DataHW {
public:
template<typename Function>
bool executeAndHandle(Function f) {
for(int tries = 0; ; tries++) {
try {
f(this);
return true;
}
catch(CrcError & e) {
// handle crc error
}
catch(IntermittentSignalError & e) {
// handle intermittent signal
if(tries < 3) {
continue;
} else {
logError("Signal interruption after 3 tries.");
}
}
catch(DriverError & e) {
// restart
}
return false;
}
}
void sendData(char const *data, std::size_t len);
void readData(char *data, std::size_t len);
};
Now if you want to do something, you can just do it:
void doit() {
char buf[] = "hello world";
hw.executeAndHandle(boost::bind(&DataHW::sendData, _1, buf, sizeof buf));
}
Since you provide function objects, you can manage state too. Let's say sendData updates len so that it knows how much bytes were read. Then you can write function objects that read and write and maintain a count for how many characters are read so far.
The downside of this second approach is that you can't access result values of the throwing functions, since they are called from the function object wrappers. There is no easy way to get the result type of a function object binder. One workaround is to write a result function object that is called by executeAndHandle after the execution of the function object succeeded. But if we put too much work into this second approach just to make all the housekeeping work, it's not worth the results anymore.
Combining the two
There is a third option too. We can combine the two solutions (wrapper and function objects).
class DataHW {
public:
template<typename R, typename Function>
R executeAndHandle(Function f) {
for(int tries = 0; ; tries++) {
try {
return f(this);
}
catch(CrcError & e) {
// handle crc error
}
catch(IntermittentSignalError & e) {
// handle intermittent signal
if(tries < 3) {
continue;
} else {
logError("Signal interruption after 3 tries.");
}
}
catch(DriverError & e) {
// restart
}
// return a sensible default. for bool, that's false. for other integer
// types, it's zero.
return R();
}
}
T sendData(char const *data, std::size_t len) {
return executeAndHandle<T>(
boost::bind(&DataHW::doSendData, _1, data, len));
}
// say it returns something for this example
T doSendData(char const *data, std::size_t len);
T doReadData(char *data, std::size_t len);
};
The trick is the return f();
pattern. We can return even when f returns void. This eventually would be my favorite, since it allows both to keep handle code central at one place, but also allows special handling in the wrapper functions. You can decide whether it's better to split this up and make an own class that has that error handler function and the wrappers. Probably that would be a cleaner solution (i think of Separation of Concerns here. One is the basic DataHW functionality and one is the error handling).