I have the following simple table that contains traffic measurement data:
CREATE TABLE "TrafficData"
(
"RoadID" character varying NOT NULL,
"DateID" numeric NOT NULL,
"ExactDateTime" timestamp NOT NULL,
"CarsSpeed" numeric NOT NULL,
"CarsCount" numeric NOT NULL
)
CREATE INDEX "RoadDate_Idx" ON "TrafficData" USING btree ("RoadID", "DateID");
The column RoadID uniquely identifies the road whose data is being recorded, while DateID identifies the day of the year (1..365) of the data - basically a rounded off representation of ExactDateTime.
I have about 100.000.000 rows; there are 1.000 distinct values in the column "RoadID" and 365 distinct values in the column "DateID".
I then run the following query:
SELECT * FROM "TrafficData"
WHERE "RoadID"='Station_1'
AND "DateID">20100610 AND "DateID"<20100618;
This takes up to three mind-boggling seconds to finish, and I cannot for the life of me figure out WHY.
EXPLAIN ANALYZE gives me the following output:
Bitmap Heap Scan on "TrafficData" (cost=104.84..9743.06 rows=2496 width=47) (actual time=35.112..2162.404 rows=2016 loops=1)
Recheck Cond: ((("RoadID")::text = 'Station_1'::text) AND ("DateID" > 20100610::numeric) AND ("DateID" < 20100618::numeric))
-> Bitmap Index Scan on "RoadDate_Idx" (cost=0.00..104.22 rows=2496 width=0) (actual time=1.637..1.637 rows=2016 loops=1)
Index Cond: ((("RoadID")::text = 'Station_1'::text) AND ("DateID" > 20100610::numeric) AND ("DateID" < 20100618::numeric))
Total runtime: 2163.985 ms
My specs:
- Windows 7
- Postgres 9.0
- 4GB RAM
I'd greatly appreciate any helpful pointers!