First off the wikipedia article states it cannot be negated from a negative signed number to a signed number. And what they mean is because it takes 9 bits to represent positive 128, which you cannot do with an 8 bit register. If you are going from negative signed to positive unsigned as a conversion, then you have enough bits. And the hardware should give you 0x80 when you negate 0x80 because that is the right answer.
For add, subtract, multiply, etc addition in twos complement is no different than decimal math from elementary school. You line up your binary numbers, add the columns, the result for that column is the least significant digit and the rest is carried over to the next column. So adding a 0b001 to 0b001 for example
1
001
001
===
010
Add the two ones in the rightmost column, the result is 0b10 (2 decimal), write zero then carry the one, one plus zero plus zero is one, nothing to carry, zero plus zero is zero, the result is 0b010.
The right most column where 1 plus 1 is 0b10 and we write 0 carry the one, well that carry the one is at the same time the carry out of the right most column and is the carry in of the second column. Also, with pencil and paper math we normally only talk about carry of something when it is non-zero but if you think about it you are always carrying a number like our second columns one plus zero is one carry the zero.
You can think of a twos complement negate as invert and add one, or walking the bits and inverting up to a point then not inverting, or taking the result of zero minus the number.
You can work subtract in binary using pencil and paper for what it is worth, makes your head hurt when borrowing compared to decimal, but works. For what you are asking though think of invert and add one.
It is easier to wrap your head around this if you take it down to even fewer bits than 8, three is a manageable number, it all scales from there.
So the first column below is the input, the second column is the inverted version and the third column is the second column plus one. The fourth column is the carry in to the msbit, the fifth column is the carry out of the msbit.
000 111 000 1 1
001 110 111 0 0
010 101 110 0 0
011 100 101 0 0
100 011 100 1 0
101 010 011 0 0
110 001 010 0 0
111 000 001 0 0
Real quick look at at adding a one to two bits:
00+1 = 001
01+1 = 010
10+1 = 011
11+1 = 100
For the case of adding one to a number, the only case where you carry out from the second bit into the third bit is when your bits are all ones, a single zero in there stops the cascading carry bits. So in the three bit inversion table above the only two cases where you have a carry into the msbit is 111 and 011 because those are the only two cases where those lower bits are all set. For the 111 case the msbit has a carry in and a carry out. for the 011 case the msbit has a carry in but not a carry out.
So as stated by someone else there are transistors wired up in the chip, if msbit carry in is set and msbit carry out is not set then set some flag somewhere, otherwise clear the flag.
So note that the three bit examples above scale. if after you invert and before you add one you have 0b01111111 then you are going to get a carry in without the carry out. If you have 0b11111111 then you get a carry in and a carry out. Note that zero is also a number where you get the same number back when you invert it, the difference is that when the bits are considered as signed, zero can be represented when negated, 1 with all zeros cannot.
The bottom line though is that this is not a crisis or end of the world thing there is a whole lot of math and other operations in the processor where carry bits and significant bits are falling off one side or the other and overflows and underflows are firing off, etc. Most of the time the programmers never check for such conditions and those bits just fall on the floor, sometimes causing the program to crash or sometimes the programmer has used 16 bit numbers for 8 bit math just to make sure nothing bad happens, or uses 8 bit numbers for 5 bit math for the same reason.
Note that the hardware doesnt know signed or unsigned for addition and subtraction. also the hardware doesnt know how to subtract. Hardware adders are three bit adders (two operands and carry in) with a result and carry out. Wire 8 of these up you have an 8 bit adder or subtractor, add without carry is the two operands wired directly with a zero wired in as the lsbit carry in. Add with carry is the two operands wired directly with the carry bit wired to the lsbit carry in. Subtract is add with the second operand inverted and a one on the carry in bit. At least from a high level perspective, that logic can all get optimized and implemented in ways often two hard to understand on casual inspection.
The really fun exercise is multiply, think about doing binary multiplication with pencil and paper, then realize it is much easier than decimal, because it is just a series of shifts and adds. given enough gates you can represent each result bit as a equation with the inputs to the equation being the operands. meaning you can do a single clock multiply if you wish, in the early days that was too many gates, so multi clock shift and adds were done, today we burn the gates and get single clock multiplies. Also note that understanding this also means that if you do say a 16 bit = 8 bit times 8 bit multiply, the lower 8 bit result is the same whether it is a signed multiply or unsigned. Since most folks do things like int = int * int; you really dont need a signed or unsigned multiply if all you care about is the result bits (no checking of flags, etc). fun stuff..