Does creating an object using reflection rather than calling the class constructor result in any significant performance differences?
Yes, it is significantly slower. We were running some code that did that, and while I don't have the metrics available at the moment, the end result was that we had to refactor that code to not use reflection. If you know what the class is, just call the constructor directly.
Yes - absolutely. Looking up a class via reflection is, by magnitude, more expensive.
Quoting Java's documentation on reflection:
Because reflection involves types that are dynamically resolved, certain Java virtual machine optimizations can not be performed. Consequently, reflective operations have slower performance than their non-reflective counterparts, and should be avoided in sections of code which are called frequently in performance-sensitive applications.
Here's a simple test I hacked up in 5 minutes on my machine, running Sun JRE 6u10:
public class Main {
public static void main(String[] args) throws Exception
{
doRegular();
doReflection();
}
public static void doRegular() throws Exception
{
long start = System.currentTimeMillis();
for (int i=0; i<1000000; i++)
{
A a = new A();
}
System.out.println(System.currentTimeMillis() - start);
}
public static void doReflection() throws Exception
{
long start = System.currentTimeMillis();
for (int i=0; i<1000000; i++)
{
A a = (A) Class.forName("misc.A").newInstance();
}
System.out.println(System.currentTimeMillis() - start);
}
}
With these results:
15 // no reflection
1781 // using reflection
Bear in mind the lookup and the instantiation are done together, and in some cases the lookup can be refactored away, but this is just a basic example.
Even if you just instantiate, you still get a factor of 10 decrease in performance:
16 // no reflection
172 // reflection using one lookup, only instantiating
Again, YMMV.
There is some overhead with reflection, but it's a lot smaller on modern VMs than it used to be.
If you're using reflection to create every simple object in your program then something is wrong. Using it occasionally, when you have good reason, shouldn't be a problem at all.
Yes, always will be slower create an object by reflection because the JVM cannot optimize the code on compilation time. See the Sun/Java Reflection tutorials for more details.
See this simple test:
public class TestSpeed {
public static void main(String[] args) {
long startTime = System.nanoTime();
Object instance = new TestSpeed();
long endTime = System.nanoTime();
System.out.println(endTime - startTime + "ns");
startTime = System.nanoTime();
try {
Object reflectionInstance = Class.forName("TestSpeed").newInstance();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
endTime = System.nanoTime();
System.out.println(endTime - startTime + "ns");
}
}
"Significant" is entirely dependent on context.
If you're using reflection to create a single handler object based on some configuration file, and then spending the rest of your time running database queries, then it's insignificant. If you're creating large numbers of objects via reflection in a tight loop, then yes, it's significant.
In general, design flexibility (where needed!) should drive your use of reflection, not performance. However, to determine whether performance is an issue, you need to profile rather than get arbitrary responses from a discussion forum.
Often you can use Apache commons BeanUtils or PropertyUtils which introspection (basically they cache the meta data about the classes so they don't always need to use reflection).
You may find that A a = new A() is being optimised out by the JVM. If you put the objects into an array, they don't perform so well. ;) The following prints...
new A(), 141 ns
A.class.newInstance(), 266 ns
new A(), 103 ns
A.class.newInstance(), 261 ns
public class Run {
private static final int RUNS = 3000000;
public static class A {
}
public static void main(String[] args) throws Exception {
doRegular();
doReflection();
doRegular();
doReflection();
}
public static void doRegular() throws Exception {
A[] as = new A[RUNS];
long start = System.nanoTime();
for (int i = 0; i < RUNS; i++) {
as[i] = new A();
}
System.out.printf("new A(), %,d ns%n", (System.nanoTime() - start)/RUNS);
}
public static void doReflection() throws Exception {
A[] as = new A[RUNS];
long start = System.nanoTime();
for (int i = 0; i < RUNS; i++) {
as[i] = A.class.newInstance();
}
System.out.printf("A.class.newInstance(), %,d ns%n", (System.nanoTime() - start)/RUNS);
}
}
This suggest the difference is about 150 ns on my machine.
Yes, it's slower.
But remember the damn #1 rule--PREMATURE OPTIMIZATION IS THE ROOT OF ALL EVIL
(Well, may be tied with #1 for DRY)
I swear, if someone came up to me at work and asked me this I'd be very watchful over their code for the next few months.
You must never optimize until you are sure you need it, until then, just write good, readable code.
Oh, and I don't mean write stupid code either. Just be thinking about the cleanest way you can possibly do it--no copy and paste, etc. (Still be wary of stuff like inner loops and using the collection that best fits your need--Ignoring these isn't "unoptimized" programming, it's "bad" programming)
It freaks me out when I hear questions like this, but then I forget that everyone has to go through learning all the rules themselves before they really get it. You'll get it after you've spent a man-month debugging something someone "Optimized".
If there really is need for something faster than reflection, and it's not just a premature optimization, then bytecode generation with ASM or a higher level library is an option. Generating the bytecode the first time is slower than just using reflection, but once the bytecode has been generated, it is as fast as normal Java code and will be optimized by the JIT compiler.
Some examples of applications which use code generation:
Invoking methods on proxies generated by CGLIB is slightly faster than Java's dynamic proxies, because CGLIB generates bytecode for its proxies, but dynamic proxies use only reflection (I measured CGLIB to be about 10x faster in method calls, but creating the proxies was slower).
JSerial generates bytecode for reading/writing the fields of serialized objects, instead of using reflection. There are some benchmarks on JSerial's site.
I'm not 100% sure (and I don't feel like reading the source now), but I think Guice generates bytecode to do dependency injection. Correct me if I'm wrong.
Be careful of the benchmarks posted above! They are flawed. See this post: http://stackoverflow.com/questions/647111/newinstance-vs-new