Finding routes for a car is pretty
easy: you store a weighted graph of
all the roads and you could use
Djikstra's algorithm. A bus route
is less obvious.
It may be less obvious, but the reality is that it's merely another dimension to the car problem, with the addition of infinite cost calculation.
For instance, you mark the buses whose time is past as having infinite cost - they then aren't included in the calculation.
You then get to decide how to weight each aspect.
Transit Time might get weighted by 1
Waiting time might get weighted by 1
Transfers might get weighted by 0.5 (since I'd rather get there sooner and have an extra transfer)
Then you calculate all the routes in the graph using any usual cost algorithm with the addition of infinite cost:
Each time you move along an edge you have to keep track of 'current' time (add up the transit time) and if you arrive at a vector you have to assign infinite cost to any buses that are prior to your current time. The current time is incremented by the waiting time at that vector until the next bus leaves, then you're free to move along another edge and find the new cost.
In other words, there's a new constraint, "current time" which is the time of the first bus starting, summed with all the transit and waiting times of buses and stops traveled.
It complicates the algorithm only a little bit, but the algorithm is still the same. You can see that most algorithms can be applied to this, some might require multiple passes, and a few won't work because you can't add the time-->infinite cost calculation inline. But most should work just fine.
You can simplify it further by simply assuming that the buses are on a schedule, and there's ALWAYS another bus, but it increases the waiting time. Do the algorithm only adding up the transit costs, then go through the tree again and add waiting costs depending on when the next bus is coming. It will sometimes result in less efficient versions, but the total graph of even a large city is actually pretty small, so it's not really an issue. In most cases one or two routes will be the obvious winners.
Google has this, but also includes additional edges for walking from one bus stop to another so you might find a slightly more optimal route if you're willing to walk in cities with large bus systems.