A good or bad design reveals itself by how well it accomodates unexpected requirements, so I would suggest keeping a stock of potential "game features" handy to inform your design reflexions. Since you're doing this as a learning project you can afford to go crazy.
Arkanoid is a very good choice for this, it offers so many options. Make different bricks score different amounts of points. Make some bricks change the score of other bricks when hit. Make some bricks require multiple hits. Give superpowers to the ball, paddle, or bricks. Vary these powers: one of them makes the ball keyboard-controllable, another makes it transparent, another reverses "gravity", and so on. Make bricks drop objects.
The goal is that when you make such a change, it impacts the minimum possible number of classes and methods. Get a feel for how your design must change to fit this criterion.
Use an IDE that has a Refactoring menu, in particular the move method refactoring. (If you haven't, read the book Refactoring.) Experiment with placing your various methods here and there. Notice what becomes hard to change when the method is placed "wrong", and what becomes easier when you place it elsewhere. Methods are placed right when objects take care of their own state; you can "tell" an object to do something, rather than "ask" it questions about its state and then make decisions based on its answers.
Let's assume that in your design each sprite is an object instance. (You could choose other strategies.) Generally, motion alters the state of a sprite, so the method that describes motion for a particular kind of sprite probably belongs on that sprite's class.
Collision detection is a sensitive part of the code, as it potentially involves checking all possible pairs of sprites. You'll want to distinguish checking for collisions and informing objects of collisions. Your ball object needs to alter its motion on colliding with the paddle, for instance. But the algorithm for detecting collisions in general won't belong on the ball class, since other pairs of objects may collide with consequences that matter to the game.
And so on...