What is the best way to constrain the values of a PRNG to a smaller range? If you use modulus and the old max number is not evenly divisible by the new max number you bias toward the 0
through (old_max - new_max - 1)
. I assume the best way would be something like this (this is floating point, not integer math)
random_num = PRNG() / max_orginal_range * max_smaller_range
but something in my gut makes me question that method (maybe floating point implementation and representation differences?).
The random number generator will produce consistent results across hardware and software platforms, and the constraint needs to as well.
I was right to doubt the pseudocode above (but not for the reasons I was thinking). MichaelGG's answer got me thinking about the problem in a different way. I can model it using smaller numbers and test every outcome. So, let's assume we have a PRNG that produces a random number between 0 and 31 and you want the smaller range to be 0 to 9. If you use modulus you bias toward 0, 1, 2, and 3. If you use the pseudocode above you bias toward 0, 2, 5, and 7. I don't think there can be a good way to map one set into the other. The best that I have come up with so far is to regenerate the random numbers that are greater than old_max/new_max
, but that has deep problems as well (reducing the period, time to generate new numbers until one is in the right range, etc.).
I think I may have naively approached this problem. It may be time to start some serious research into the literature (someone has to have tackled this before).