I suspect there's a risk of premature optimization here. Also, be careful about your geometry. Your opposite/adjacent approach is a property of right angle triangles, is that what you actually have?
I'm assuming your points are planar, and so for the general case you have them implicitly representing two vectors form the origin (call these v1 v2), so your angle is
theta=arccos(dot(v1,v2)/(|v1||v2|)) where |.| is vector length.
Making this faster (assuming the need) will depend on a lot of things. Do you know the vector lengths, or have to compute them? How fast can you do a dot product in your architecture. How fast is acos? At some point tricks like table lookup (probably interpolated) might help but that will cost you accuracy.
It's all trade-offs though, there really isn't a general answer to your question.
[edit: added commentary]
I'd like to re-emphasize that often playing "x is fastest" is a bit of a mugs game with modern cpus and compilers anyway. You won't know until you measure it and grovel the generated code. When you hit the point that you really care about it at this level for a (hopefully small) piece of code, you can find out in detail what your system is doing. But it's painstaking. Maybe a table is good. But maybe you've got fast vector computations and a small cache. etc. etc. etc. It all amounts to "it depends". Sorry 'bout that. On the other hand, if you haven't reached the point that you really care so much about this bit of code... you probably shouldn't be thinking about it at this level at all. Make it right. Make it clean (which means abstraction as well as code). Then worry about the overhead.